Anúncios

Todas aulas presenciais são canceladas à partir do dia 16.03.2020 !



Informações sobre o curso de Física Atômica e Molecular, SFI5814, 2020-1

Semestre: 2020-1
Responsável: Prof. Philippe W. Courteille, philippe.courteille@ifsc.usp.br, Sala 45 do Grupo de Óptica
Início e termino das aulas: 9.3.2020 até 26.6.2020
Consultas: Sexta-feira à tarde na Sala 45 do Grupo de Óptica
Horário e local da aula: Segunda-feira 10h00 à 12h00 e Sexta-feira de 14h00 à 16h00 na sala F-210
Feriados: 6.4.-12.4.2020 (semana santa), 20.4.-21.4. (Tiradentes), 1.5. (dia do trabalho)
Carga Horária (por semana):
Teória 4
Prática 3
Estudos 8
Duração 15 semanas
Total 225 horas
Conteúdo:
1) Fundamentos da mecânica quântica
2) Momento angular e átomo de hidrogênio
3) Teoria de perturbação e método variacional
4) Estrutura fina e hiperfina
5) Interação com campos estáticos
6) Estruturas atômicas e moleculares
7) Rotações e vibrações moleculares
8) Transições eletrônicas moleculares
9) Propriedades elétricas e ópticas de moléculas
10) Colisões
Literatura recomendada:
Philippe W. Courteille, Apostila do Curso: Quantum Mechanics applied to Atoms and Light
Philippe W. Courteille, Apostila do Curso: Atom-Light Interaction and Basic Applications
Jook Walraven, Quantum Gases, Lectures at the University of Amsterdam
P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, (3rd ed.) Oxford University, (1997, 2001)
I.N. Levine, Quantum Chemistry, Allyn and Bacon, (3rd ed.) Boston (1983)
C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics, (vol. 1) Wiley Interscience
H.A. Bethe, R. Jackiw, Intermediate Quantum Mechnanics, (2nd ed.) W.A. Benjamin, Inc)
J.I. Steinfeld, Molecules and Radiation, The MIT Press
A. Corney, Atomic and Laser Spectroscopy, Clarendon Press, Oxford
B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, John Wiley & Sons
Eric Cornell, Very Cold Indeed: The Nanokelvin Physics of Bose-Einstein Condensation


Exercícios

Para absolver este curso com sucesso, o aluno deve estudar a matéria indicada na coluna 'Tópicos' e disponibilizada na apostila do curso 'Atomic and Molecular Physics' até a data indicada em negrito na tabela embaixo. Também, ele deverá resolver os exercícios indicados em cor azul e enviar até a data indicada por e-mail ao endereço 'philippe.courteille@ifsc.usp.br'.

Data de entregaCapítulos da apostilaExercício Tópicos
---------------------- ---------------------------- ------------ -----------
09.03.2020 1.1.1 - 1.2.3Rutherford's and Bohr's atom models
13.03.2020 1.2.6.1Analysis of Rutherford scattering
13.03.2020 1.2.6.2Rutherford scattering
13.03.2020 2.4.1 - 2.4.3Time evolution in quantum mechanics, Schrödinger and Heisenberg picture
16.03.2020 1.2.6.5Magnetic moments
16.03.2020 1.2.6.7The hydrogen atom
16.03.2020 2.4.4 The interaction picture
20.03.2020 2.3.1 - 2.3.6Degeneracy, bases as unitary operators, and CCOC
23.03.2020 2.2.9.2Normalization of the Bloch vector
23.03.2020 2.2.9.5Two-level atom
23.03.2020 2.2.9.6The ammonium molecule
23.03.2020 2.3.7 - 2.3.8Spanning multi-dimensional Hilbert spaces
27.03.2020 2.5.1 - 2.5.3Unitary symmetry transformations in quantum mechanics
30.03.2020 2.3.9.4Eigenvalue equation
30.03.2020 2.3.9.7Eigenvalues
30.03.2020 2.4.6.1Coupled two-level atom
30.03.2020 4.1.1 - 4.1.2Particle in a central potential, separation of the angular motion
03.04.2020 4.1.3 - 4.1.4Separation of the radial motion
06.04.2020 2.5.5.1Calculus with commutator
06.04.2020 2.5.5.4Parity
06.04.2020 4.1.5.1Parity of the spherical harmonic functions
06.04.2020 4.2.1 - 4.3.3Quantum treatment of hydrogen and the SU(2) algebra of angular momentum
13.04.2020 4.1.5.3Motion of a free particle in spherical coordinates
13.04.2020 4.1.5.4Particle in a spherical box
13.04.2020 4.1.5.6Particle in a spherical harmonic potential
13.04.2020 4.4.1 - 4.4.4Coupling of angular momenta and Clebsch-Gordan coefficients
17.04.2020 5.1.1 - 5.2.2TIPT with/out degeneracy, variational method
20.04.2020 4.2.3.5The virial theorem and Bohr's model
20.04.2020 4.2.3.6Transition matrix elements
20.04.2020 4.3.4.6Matrix representation of the components of the angular momentum
20.04.2020 5.4.1 - 5.4.4TDPT, sudden and periodic perturbations
24.04.2020 5.4.5 + 7.1.2Higher-order transition rates, the Dirac equation
27.04.2020 4.4.5.1Addition/subtraction of angular momenta
27.04.2020 4.4.5.11Transition amplitudes between Zeeman sub-states
27.04.2020 4.4.5.7Spin-orbit coupling
27.04.2020 7.1.3 - 7.1.4Electron spin
04.05.2020 4.4.5.9(Un-)coupled bases of the spherical harmonics
04.05.2020 4.4.5.12Expansion of the spin-orbit coupling
04.05.2020 5.1.3.4Perturbation of a 2-level system
04.05.2020 7.2.1 - 7.3.2Hydrogen fine structure via Dirac equation and TIPT
08.05.2020 7.4.1 - 7.4.4Hyperfine structure and exotic atoms
11.05.2020 5.1.3.7Stark effect for a charge in a harmonic oscillator
11.05.2020 5.2.3.3Effect of finite nuclear mass on hydrogen via Rayleigh-Ritz
11.05.2020 5.2.3.4Collapse of a condensate with attractive interactions
11.05.2020 8.1.1 - 8.2.5Charged particles in electromagnetic fields, interaction with static fields
15.05.2020 8.2.6 - 9.2.3Wavefunction symmetrization, Pauli's principle
18.05.2020 5.4.6.1Perturbed harmonic oscillator
18.05.2020 7.1.5.4Calculating with Dirac matrices
18.05.2020 9.3.1 - 9.4.3Atoms with many electrons, periodic system
22.05.2020 Atom-Light Script 1.2.2 - 2.1.3Spontaneous emission, density operator, and Liouville equation
25.04.2020 7.1.5.3Constants of motion of Dirac's Hamiltonian 1
25.04.2020 7.1.5.5Constants of motion of Dirac's Hamiltonian 2
25.04.2020 7.1.5.2Zitterbewegung
25.05.2020 13.2.1 - 13.4.5Bloch equations and line broadening
29.05.2020 13.5.1 - 14.1.3Multilevel atoms and quantized radiation
01.06.2020 8.2.8.3Coupling of two electrons
01.06.2020 14.3.5.2Non-Hermitian time evolution
01.06.2020 13.4.6.2Saturated absorption spectroscopy
01.06.2020 14.2.1 - 14.2.3Jaynes-Cummings model, quantum correlation in light fields
05.06.2020 15.1.1 - 15.1.3 + 10.1.1 - 10.1.5Magnetic and adiabatic potentials and the Born-Oppenheimer approximation
08.06.2020 13.1.4.5Thermal mixture
08.06.2020 13.1.4.6Converting a pure state into a mixture by incomplete measurement
08.06.2020 14.2.4.5Creation of quantum correlations in an optical mode
08.06.2020 10.2.1 - 10.2.5 + 11.1.1 - 11.1.3Molecular vibrations and rotations, cold collisions
12.06.2020 11.4.1 - 11.4.2 + 23.1.1 - 23.2.5Feshbach resonances, contact potentials and the Gross-Pitaevskii equation
15.06.2020 21.1.1 - 21.6.5Atom optics and Bose-Einstein condensation
19.06.2020 19.1.1 - 19.3.2Collective effects in atoms interacting with cavities, atomic self-organization

Seminars Monograph Presentation
22.06.2020 Fabio The Jaynes-Cummings model and the quantization of the electro-magnetic field
22.06.2020 Bruno
26.06.2020 Anderson Weisskopf-Wigner derivation of the Bloch equations
26.06.2020 Salvio Ultracold bosonic and fermionic quantum gases

Critérios de avaliação do seminário:
Estrutura: motivação e contexto, introdução e previsão sobre a organização da apresentação, conclusão
Conteúdo: escolha dos assuntos, organização lógica e didática dos argumentos, preparação à responder perguntas
Didática: utilização de exemplos e de esquemas, interpretação e discussão dos resultados, implicação do auditório, capacidade de despertar curiosidade no auditório
Presentação: clareza, organização da palestra, da losa, fluxo da apresentação
Também será avaliado a participação em discussões sobre apresentações dos outros alunos!

Suggestions for seminar topics:The Jaynes-Cummings model and the quantization of the electro-magnetic field
Observation of super- and subradiant spontaneous emission of two ions,
Squeezed states,
The Jaynes-Cummings model,
Quantum projection noise,
Quantum gates,
The method of quantum Monte-Carlo wavefunction simulation,
The quantum Zeno effect,
Bloch equations: derivation and interpretation,
The quantum jumps, its history and observation,
Schrödinger's cat,
The Einstein-Podolski-Rosen hypothesis and its experimental falsification,
Elitzur and Vaidman bomb testing problem,
Topological phases and the Aharonov-Bohm effect,
Quantum non-demolition measurements,
Calculation of photoelectric effect from Fermi's golden rule,
Quantum correlations and the experiments of Young and Hanbury-Brown-Twiss,
The Hartree-Fock method,
Temporal evolution of a free particle described by a Gaussian wave packet,
The WKB approximation,
Rydberg atoms,
The helium atom,
The quadratic and the dynamic Stark effect,
The blackbody radiation-induced Stark effect,
The method of combining atomic orbitals (LCAO),
Ultracold molecules,
Efimov states,
Bose-Einstein condensation.